67 research outputs found

    High-MgO lavas associated to CFB as indicators of plume-related thermochemical effects: the case of ultra-titaniferous picrite-basalt from the Northern Ethiopian-Yemeni plateau

    Get PDF
    A comprehensive petrological and geochemical dataset is reported in order to define the thermo-compositional characteristics of Ti (Fe)-enriched picrite-basalt lavas (HT2, TiO2 3-7 wt%), erupted close to the axial zone of the inferred Afar mantle plume, at the centre of the originally continuous Ethiopian-Yemeni CFB plateau (ca. 30Ma) which is zonally arranged with progressively lower Ti basalts (HT1, TiO2 2-4 wt%; LT, TiO2 1-3 wt%) toward the periphery. Integrated petrogenetic modelling based on major and trace element analyses of bulk rocks, minerals and melt inclusions in olivines, as well as Sr-Nd-Pb-He-O isotope compositional variations enables us to make several conclusions. 1) The phase equilibria constraints indicate that HT2 primary picrites were generated at ca. 1570°C mantle potential temperatures (Tp) in the pressure range 4-5 GPa whereas the HT1 and LT primary melts formed at shallower level (< 2 to 3 GPa, Tp 1530 °C for HT1 and 1430°C for LT). Thus the Afar plume head was a thermally and compositionally zoned melting region with maximum excess temperatures of 300-350°C with respect to the ambient mantle. 2) The HT2 primary melts upwelled nearly adiabatically to the base of the continental crust (ca. 1 GPa) where fractionation of olivine, followed by clinopyroxene, led to variably differentiated picritic and basaltic magmas. 3) Trace element modelling requires that the primary HT2 melts were generated - either by fractional or batch melting (F 9-10%) - from a mixed garnet peridotite source (85%) with 15% eclogite (derived from transitional MORB protoliths included in Panafrican terranes) that has to be considered a specific Ti-Fe and incompatible element enriched component entrained by the Afar plume. 4) The LT, HT1 and HT2 lavas have 143Nd/144Nd = 0.5131-0.5128, whereas Sr-Pb isotopes are positively correlated with TiO2, varying from 87 Sr/86Sr 0.7032 and 206Pb/204Pb 18.2 in LT basalts to 87Sr/86Sr 0.7044 and 206Pb/204Pb 19.4 in HT2 picrite-basalts. High 3He/4He (15-20 RA) ratios are exclusively observed in HT2 lavas, confirming earlier evidence that these magmas require a component of deep mantle in addition to eclogite, while the LT basalts may more effectively reflect the signature of the pre-existing mantle domains. The comparison between high-MgO (13-22%) lavas from several Phanerozoic CFB provinces (Karoo, Paranà-Etendeka, Emeishan, Siberia, Deccan, North Atlantic Province) shows that they share extremely high mantle potential temperatures (Tp 1550-1700°C) supporting the view that hot mantle plumes are favoured candidates for triggering many LIPs. However, the high incompatible element and isotopic variability of these high-MgO lavas (and associated CFB) suggest that plume thermal anomalies are not necessarily accompanied by significant and specific chemical effects, which depend on the nature of mantle materials recycled during the plume rise, as well as by the extent of related mantle enrichments (if any) on the pre-existing lithospheric section

    Subduction-related hybridization of the lithospheric mantle revealed by trace element and Sr-Nd-Pb isotopic data in composite xenoliths from Tallante (Betic Cordillera, Spain)

    Get PDF
    Ultramafic xenoliths are rarely found at convergent plate margins. A notable exception is in the Betic Cordillera of southern Spain, where the eruption of xenolith-bearing alkaline basalts during the Pliocene post-dated the Cenozoic phase of plate convergence and subduction-related magmatism. Mantle xenoliths of the monogenetic volcano of Tallante display extreme compositional heterogeneities, plausibly related to multiple tectono-magmatic episodes that affected the area. This study focuses on two peculiar composite mantle xenolith samples from Tallante, where mantle peridotite is crosscut by felsic veins of different size and mineralogy, including quartz, orthopyroxene, and plagioclase. The veins are separated from the peridotite matrix by an orthopyroxene-rich reaction zone, indicating that the causative agents were alkali-rich hydrous silica-oversaturated melts, which were likely related to recycling of subducted continental crust components. The present study reports new and detailed major and trace elements and Sr-Nd-Pb analyses of the minerals in the composite Tallante xenoliths that confirm the continental crust derivation of the metasomatic melts, and clarifies the mode in which subduction-related components are transferred to the mantle wedge in orogenic areas. The particular REE patterns of the studied minerals, as well as the variation of the isotopic ratios between the different zones of the composite xenoliths, reveal a complex metasomatic process. The distribution of the different elements, and their isotope ratios, in the studied xenoliths are controlled by the mineral phases stabilised by the interaction between the percolating melts and the peridotitic country rock. The persistence of marked isotopic heterogeneities and the lack of re-equilibration suggest that metasomatism of the sub-continental lithospheric mantle occurred shortly before the xenolith exhumation. In this scenario, the studied xenoliths and the metasomatic processes that affected them may be representative of the mantle sources of mafic potassic to ultrapotassic magmas occurring in post-collisional tectonic settings

    First evidence of lamprophyric magmatism within the Subbetic Zone (Southern Spain)

    Get PDF
    Two drillings carried out at Cerro Prieto (Province of Málaga), together with additional geophysical data, revealed the existence of an igneous body formed of rock-types previously unknown in the Subbetic zone. The recovered rocks, emplaced under hypoabyssal conditions, are predominantly porphyric, containing olivine, diopside and TiO2-rich phlogopite phenocrysts (up to 1-2 mm in size) within a micro-to-hypocrystalline groundmass componed of alkali-feldspar, diopside, phlogopite and abundant magnetite, and could be classified as "alkali minettes" lamprophyres. They contain numerous xenocrysts corroded by the magma and centimetric ultrafemic xenoliths deriving from the mantle. Clinopyroxenes yield crystallisation temperatures from about 1150 to 1320º C and pressures ranging from about 4 to 17 kbar, suggesting 50 km as the minimum depth of the magma sources. The chemical compositions of these lamprophyres are similar to intra plate alkali-basalts, derived from oceanic-island-basaltic-type highly metasomatized mantle sources. 40Ar/39Ar dating of a phlogopite mineral separate gave an age of 217±2.5 Ma. However, these rocks are more similar to the Permian alkaline lamprophyres in the Spanish Central System than to the Mesozoic dolerites and basalts widespread throughout the Subbetic Zone. We propose that the Cerro Prieto subvolcanic event represents the onset of a widespread magmatic phase induced by the post-Hercynian extensional tectonic activity that also affected the whole South-Iberian Paleomargin, within a geodynamic context that ultimately led to the opening of the Atlantic and the Neotethys oceans, accompanied by intrusion of basic magmas along their continental margins

    The Betic Ophiolites and the Mesozoic Evolution of the Western Tethys

    Get PDF
    The Betic Ophiolites consist of numerous tectonic slices, metric to kilometric in size, of eclogitized mafic and ultramafic rocks associated to oceanic metasediments, deriving from the Betic oceanic domain. The outcrop of these ophiolites is aligned along 250 km in the Mulhacen Complex of the Nevado-Filabride Domain, located at the center-eastern zone of the Betic Cordillera (SE Spain). According to petrological/geochemical inferences and SHRIMP (Sensitive High Resolution Ion Micro-Probe) dating of igneous zircons, the Betic oceanic lithosphere originated along an ultra-slow mid-ocean ridge, after rifting, thinning and breakup of the preexisting continental crust. The Betic oceanic sector, located at the westernmost end of the Tethys Ocean, developed from the Lower to Middle Jurassic (185-170 Ma), just at the beginning of the Pangaea break-up between the Iberia-European and the Africa-Adrian plates. Subsequently, the oceanic spreading migrated northeastward to form the Ligurian and Alpine Tethys oceans, from 165 to 140 Ma. Breakup and oceanization isolated continental remnants, known as the Mesomediterranean Terrane, which were deformed and affected by the Upper Cretaceous-Paleocene Eo-Alpine high-pressure metamorphic event, due to the intra-oceanic subduction of the Jurassic oceanic lithosphere and the related continental margins. This process was followed by the partial exhumation of the subducted oceanic rocks onto their continental margins, forming the Betic and Alpine Ophiolites. Subsequently, along the Upper Oligocene and Miocene, the deformed and metamorphosed Mesomediterranean Terrane was dismembered into different continental blocks collectively known as AlKaPeCa microplate (Alboran, Kabylian, Peloritan and Calabrian). In particular, the Alboran block was displaced toward the SW to occupy its current setting between the Iberian and African plates, due to the Neogene opening of the Algero-Provencal Basin. During this translation, the different domains of the Alboran microplate, forming the Internal Zones of the Betic and Rifean Cordilleras, collided with the External Zones representing the Iberian and African margins and, together with them, underwent the later alpine deformation and metamorphism, characterized by local differences of P-T (Pressure-Temperature) conditions. These Neogene metamorphic processes, known as Meso-Alpine and Neo-Alpine events, developed in the Nevado-Filabride Domain under Ab-Ep amphibolite and greenschists facies conditions, respectively, causing retrogradation and intensive deformation of the Eo-Alpine eclogites.This research was funded by Project CGL2009-12369 of the Spanish Ministry of Science and Innovation, co-financed with FEDER funds, and by Research Group RNM 333 of Junta de Andalucía (Spain)

    GEOLOGIA DE LAS MARGENES DE LA PLACA DEL CARIBE: GENERALIDADES EN GUATEMALA, COSTA RICA, LA ESPAÑOLA Y RESULTADOS PRELIMINARES DEL ANALISIS DE UNA TRANSVERSAL EN LA CORDILLERA DE LA COSTA DE VENEZUELA

    Get PDF
    The Caribbean Plate margins are constituted by deformed belts built up since the Cretaceous in acompressional and strike-slip stress field, which allowed overthrusting of the Caribbean crust onto the Pacific,North and South American Plates.The Caribbean borders include Jurassic-Cretaceous ophiolitic units (Great Antilles, Venezuela, Costa Rica,Guatemala, etc.), composed by mantle peridotites, gabbros, volcanic and sedimentary covers, which have beendeformed in at least two ductile penetrative phases and were often metamorphosed in the prehnite-pumpelleyite,green and blue schist, amphibolite, and in places eclogite facies. These units may present part of a subductioncomplex or are an accretionary prism.This paper deals with a regional geological survey (1989-1993) conducted on the main periCaribbean ophioliticunits of Guatemala, Costa Rica, Hispanola, and Venezuela. The preliminary data, recently updated with new anddetailed researches, allow to recognize the magmatic affinities (MORB and IAT) of the different reconstructedlithological sequences, which can be related with an hypothetical kinematic model of the development of theCaribbean Plate. Los márgenes de la placa del Caribe están constituidos por cinturones deformados debido a una seriede fases compresivas ocurridas desde el Cretácico, con esfuerzos tensionales y/o fallas transcurrentes super-puestos. Estos cinturones deformados contienen porciones variables de corteza caribeña sobrecorrida a las placasadyacentes (Norte y Suramericana, Pacífica).En las Antillas Mayores, Venezuela, Costa Rica y Guatemala se conocen unidades ofiolíticas de edad Jurásica-Cretácica, constituidas por secuencias de manto, corteza y una cubierta sedimentaria más o menos espesa; lassecuencias se encuentran generalmente serpentinizadas, deformadas en al menos dos fases dúctiles penetrativas ymetamorfizadas en las facies prehnita-pumpellita, esquistos azules y esquistos verdes.Desde el punto de vista tectónico-cinemático es posible incluir estas unidades en porciones de complejos de sub-ducción construidos por accreción o "underplating".En el presente estudio regional sobre las principales unidades ofiolíticas de los márgenes del Caribe, se eviden cian diferentes secuencias litológicas pertenecientes a procesos evolutivos con diferentes tendencias, desde MORB a IAT.Los resultados preliminares de una transversal en la Cordillera de la Costa de Venezuela permiten interpretar algunas secuencias litológicas como provenientes de protolitos tipo MOR

    Origin and evolution of Cenozoic magmatism of Sardinia (Italy). A combined isotopic (Sr-Nd-Pb-O-Hf-Os) and petrological view

    Get PDF
    The Cenozoic igneous activity of Sardinia is essentially concentrated in the 38-0.1 Myr time range. On the basis of volcanological, petrographic, mineralogical, geochemical and isotopic considerations, two main rock types can be defined. The first group, here defined SR (Subduction-Related) comprises Late Eocene-Middle Miocene (~ 38-15 Ma) igneous rocks, essentially developed along the Sardinian Trough, a N-S oriented graben developed during the Late Oligocene-Middle Miocene. The climax of magmatism is recorded during the Early Miocene (~ 23-18 Ma) with minor activity before and after this time range. Major and trace element indicators, as well as Sr-Nd-Pb-Hf-Os-O isotope systematic indicate complex petrogenetic processes including subduction-related metasomatism, variable degrees of crustal contamination at shallow depths, fractional crystallization and basic rock partial melting. Hybridization processes between mantle and crustal melts and between pure mantle and crustally contaminated mantle melts increased the isotopic and elemental variability of the composition of the evolved (intermediate to acid) melts. The earliest igneous activity, pre-dating the Early Miocene magmatic climax, is related to the pushing effects exerted by the Alpine Tethys over the Hercynian or older lower crust, rather than to dehydration processes of the oceanic plate itself. The second group comprises volcanic rocks emplaced from ~ 12 to ~ 0.1 Ma. The major and, partially, trace element content of these rocks roughly resemble magmas emplaced in within-plate tectonic settings. From a Sr-Nd-Pb-Hf-Os isotopic point of view, it is possible to subdivide these rocks in two subgroups. The first, defined RPV (Radiogenic Pb Volcanic) group comprises the oldest and very rare products (~ 12-4.4 Ma) occurring only in the southern sectors of Sardinia. The second group, defined UPV (Unradiogenic Pb Volcanic), comprises rocks emplaced in the remaining central and northern sectors during the ~ 4.8-0.1 Ma time range. The origin of the RPV rocks remains quite enigmatic, since they formed just a few Myr after the end of a subduction-related igneous activity but do not show any evidence of slab-derived metasomatic effects. In contrast, the complex origin of the mafic UPV rocks, characterized by low 206Pb/204Pb (17.4-18.1), low 143Nd/144Nd (0.51232-0.51264), low 176Hf/177Hf (0.28258-0.28280), mildly radiogenic 87Sr/86Sr (~ 0.7044) and radiogenic 187Os/188Os ratios (0.125-0.160) can be explained with a mantle source modified after interaction with ancient delaminated lower crustal lithologies. The strong isotopic difference between the RPV and UPV magmas and the absence of lower crustal-related features in the SR and RPV remain aspects to be solved

    Petrogenesis and tectono-magmatic significance of the Albanide-Hellenide subpelagonian ophiolites

    Get PDF
    The Mirdita-Subpelagonian ophiolites of the Albanide-Hellenide orogen are parts of a continuous belt extending from the former Yugoslavia to Greece, and share common geological, litho-stratigraphical, geochemical, and metallogenic features. In the Albanian sector, two distinct ophiolitic belts can be clearly identified: the Western Belt, mainly composed of mid-ocean ridge (MORB) ophiolites, and the Eastern Belt characterized by supra-subduction zone (SSZ) ophiolites with prevalent island arc tholeiitic (IAT) and minor boninitic affinity. In the easternmost border of the Western Belt (Central Mirdita), a transitional zone with MORB/IAT intermediate basalts and boninitic dykes also occur. In the Greek sector, a definite distinction into two ophiolitic belts cannot be made, and MORB-type ophiolites (western type) are subordinate, being represented only by the intrusive and lower volcanic sequences of the Pindos Massif. By contrast, SSZ- ophiolites (eastern type) are predominant and well-represented by the IAT and boninitic sequences of the Vourinos Massif, as well as by MORB/IAT intermediate basaltic-andesitic suites and boninites of the upper part of the Pindos volcanic sequence. Petrological and geochemical modelling suggest that the different Albanide -Hellenide ophiolitic sequences originated from distinctly different parental magmas by partial melting of mantle sources progressively depleted by previous melt extractions. MORB may have derived from 10 - 20% partial melting of an undepleted lherzolitic source, while MORB/IAT intermediate basalts may have generated by ca. 10% of H2O-assisted partial melting of a cpx-poor lherzolite that had previously experienced MORB extraction. IAT magmas and boninites may, in turn, have derived from 10 – 20 % and ca. 30% partial melting of the same source, variably enriched by subduction-derived fluids and related incompatible elements. The favoured tectono-magmatic model for the genesis of the Albanide-Hellenide ophiolites implies a low plate-convergence velocity with: 1) intra-oceanic subduction within a pristine MORB lithosphere, resulting in SSZ magmatism with IAT affinity, and generation of a nascent arc by nearly open-system supply of undifferentiated basalts (sheeted dyke complexes); 2) progressive slab sinking and retreat coupled with mantle diapirism and extension from the arc axis to the forearc region, with generation of boninites and/or very low-Ti tholeiites from depleted sub-arc sources, leaving highly depleted harzburgitic residua; 3) contemporaneous generation at the spreading axis of IAT/MORB intermediate basalts resulting from the interference of MORB-source diapirs with suprasubduction mantle sources; 4) convergence processes leading to obduction of large and relatively intact lithospheric sections of SSZ ophiolites onto the Pelagonian continental margin, often with the interposition of metamorphic soles. The latter have prevalent MORB affinity and represent relics of the pristine MORB lithosphere overthrust by the still hot ophiolitic slab

    Caribbean Plate margin evolution: constraints and current problems

    No full text
    Oceanic crust was generated at multiple spreading centres during the Jurassic and Early Cretaceous, forming a “proto-Caribbean” oceanic domain. During the Cretaceous, part of that crustal domain thickened into an oceanic plateau, of petrologic Mid-Ocean Ridge (MOR) to Ocean Island Basalt (OIB) affinity. Simultaneously, the South and North American continental plates developed rifting and tholeiitic magmatism in the Middle America region (Venezuela and Cuba). The rifting created space for the proto-Caribbean oceanic domain. Petrological and regional correlations suggest that, beginning in the Cretaceous, the proto-Caribbean domain was involved into two main stages of subduction, referred to as first and second “eo-Caribbean” phases. Each phase is characterized by oblique convergence. The older (mid-Cretaceous) stage, involved in subduction (probably eastward dipping) of thin proto-Caribbean lithosphere, with generation of Island Arc Tholeiitic (IAT) and Calc-Alkaline (CA) magmatism, accompanied by high pressure - low temperature (HP - LT) metamorphic effects, and formation of arc units and ophiolitic melanges (Guatemala, Cuba, Hispaniola and Puerto Rico, in the northern margin; Venezuela in the southern). The Late Cretaceous second stage consisted of westward dipping intra-oceanic subduction; it is recorded by tonalitic arc magmatism related to the onset of the Aves - Lesser Antilles arc system. Since the Late Cretaceous, the inner undeformed portions of the Caribbean oceanic plateau (i.e. the Colombian and Venezuelan Basins) were trapped east of the Pacific subduction of the Chortis, Chorotega and Choco blocks, ultimately building the Central American Isthmus. From Tertiary to Present, continuous eastward movement of the Caribbean Plate with respect to the Americas, gave rise to transpression along both the northern and southern margins, marked by scattered and dismembered ophiolitic terranes

    Scuola di Studi Avanzati IUSS MONITORAGGIO DEI SISTEMI IDRO-AGRO-AMBIENTALI Ferrara 9-11 luglio 2012

    No full text
    La scuola ha incluso tre giorni di dibattito ed interventi su tematiche a carattere ambientale. L'approccio multidisciplinare è risultato dal background eterogeneo e diversificato dei relatori che includeva contributi dalle Scienze della Terra, Scienze Agronomiche e Scienze Fisiche
    corecore